Steps for Analyzing the Graph of a Rational Function R:

1. Factor the numerator and denominator of R and find its domain. If 0 is in the domain, find the y intercept, $\mathrm{R}(0)$ and plot it.
2. Write \mathbf{R} in lowest terms as $\frac{p(x)}{q(x)}$ and find the real zeros of the numerator, i.e. set $p(x)=0$. These are the x intercepts of the graph. Determine the behavior of the graph of R near each x intercept using the same procedure as polynomial functions. Plot each x-intercept and indicate the behavior of the graph near it.
3. With \mathbf{R} in lowest terms as $\frac{p(x)}{q(x)}$ and find the real zeros of the denominator, i.e. set $q(x)=0$. These are the vertical asymptotes of the graph. Graph each vertical asymptote using a dashed line.
4. Locate any horizontal or oblique asymptotes using the criteria below. Graph the asymptotes using a dashed line. Determine the points, if any, at which the graph of R intersects these asymptotes. Plot any such points
a. If the degree of the numerator is less than the degree of the denominator, R is a proper rational function and the graph of R will have the horizontal asymptote $y=0$.
b. If the degree of the numerator is greater than or equal to the degree of denominator, then R is improper and we use long division.
i. If the degree of the numerator equals the degree of the denominator, the quotient obtained will be the number a_{n} / b_{m} (the coefficients of the highest power of the polynomial) and the line $y=a_{n} / b_{m}$ is a horizontal asymptote.
ii. If the degree of the numerator is one more than the degree of the denominator, the quotient obtained is of the form $a x+b$ and the line $y=a x+b$ is an oblique asymptote.
iii. If the degree of the numerator is two or more than the degree of the denominator, the quotient obtained is a polynomial of degree 2 or higher, and R has neither a horizontal nor an oblique asymptote. In this case, for $|x|$ unbounded, the graph of R will behave like the graph of the quotient.
5. Using the real zeros of the numerator and denominator of the given equation for R, divide the x-axis into intervals and determine where the graph is above and below the \boldsymbol{x}-axis by choosing a number in each interval and evaluating R there. Plot the points found.
6. Analyze the behavior of the graph of \mathbf{R} near each asymptote and indicate the behavior on the graph.
7. Put all the information together to obtain the graph of \mathbf{R}.

Use the Steps 1-7 to analyze the graph of each function.
1.
$F(x)=\frac{x^{2}+3 x+2}{x-1}$
2.
$R(x)=\frac{8 x^{2}+26 x+15}{2 x^{2}-x-15}$

